3.638 \(\int \frac {(d+e x^2)^2}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx\)

Optimal. Leaf size=608 \[ \frac {\sqrt {\pi } e^2 e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}-\frac {\sqrt {3 \pi } e^2 e^{\frac {3 a}{b}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{5}} e^2 e^{\frac {5 a}{b}} \text {erf}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\pi } e^2 e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}-\frac {\sqrt {3 \pi } e^2 e^{-\frac {3 a}{b}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{5}} e^2 e^{-\frac {5 a}{b}} \text {erfi}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}-\frac {\sqrt {\pi } d e e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{3}} d e e^{\frac {3 a}{b}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}-\frac {\sqrt {\pi } d e e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{3}} d e e^{-\frac {3 a}{b}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\pi } d^2 e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {\sqrt {\pi } d^2 e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c} \]

[Out]

1/160*e^2*exp(5*a/b)*erf(5^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*5^(1/2)*Pi^(1/2)/c^5/b^(1/2)+1/160*e^2*erfi
(5^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*5^(1/2)*Pi^(1/2)/c^5/exp(5*a/b)/b^(1/2)+1/12*d*e*exp(3*a/b)*erf(3^(
1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/c^3/b^(1/2)+1/12*d*e*erfi(3^(1/2)*(a+b*arcsinh(c*x))^(
1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/c^3/exp(3*a/b)/b^(1/2)+1/2*d^2*exp(a/b)*erf((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*P
i^(1/2)/c/b^(1/2)-1/4*d*e*exp(a/b)*erf((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c^3/b^(1/2)+1/16*e^2*exp(a/b
)*erf((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c^5/b^(1/2)+1/2*d^2*erfi((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi
^(1/2)/c/exp(a/b)/b^(1/2)-1/4*d*e*erfi((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c^3/exp(a/b)/b^(1/2)+1/16*e^
2*erfi((a+b*arcsinh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c^5/exp(a/b)/b^(1/2)-1/32*e^2*exp(3*a/b)*erf(3^(1/2)*(a+b*ar
csinh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/c^5/b^(1/2)-1/32*e^2*erfi(3^(1/2)*(a+b*arcsinh(c*x))^(1/2)/b^(1/2)
)*3^(1/2)*Pi^(1/2)/c^5/exp(3*a/b)/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.20, antiderivative size = 608, normalized size of antiderivative = 1.00, number of steps used = 39, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {5706, 5657, 3307, 2180, 2205, 2204, 5669, 5448} \[ -\frac {\sqrt {\pi } d e e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{3}} d e e^{\frac {3 a}{b}} \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}-\frac {\sqrt {\pi } d e e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{3}} d e e^{-\frac {3 a}{b}} \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {\sqrt {\pi } e^2 e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}-\frac {\sqrt {3 \pi } e^2 e^{\frac {3 a}{b}} \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{5}} e^2 e^{\frac {5 a}{b}} \text {Erf}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\pi } e^2 e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}-\frac {\sqrt {3 \pi } e^2 e^{-\frac {3 a}{b}} \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\frac {\pi }{5}} e^2 e^{-\frac {5 a}{b}} \text {Erfi}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {\sqrt {\pi } d^2 e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {\sqrt {\pi } d^2 e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2/Sqrt[a + b*ArcSinh[c*x]],x]

[Out]

(d^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(2*Sqrt[b]*c) - (d*e*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a
+ b*ArcSinh[c*x]]/Sqrt[b]])/(4*Sqrt[b]*c^3) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(16
*Sqrt[b]*c^5) + (d*e*E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*Sqrt[b]*c^3) -
 (e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(32*Sqrt[b]*c^5) + (e^2*E^((5*a)
/b)*Sqrt[Pi/5]*Erf[(Sqrt[5]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(32*Sqrt[b]*c^5) + (d^2*Sqrt[Pi]*Erfi[Sqrt[a +
 b*ArcSinh[c*x]]/Sqrt[b]])/(2*Sqrt[b]*c*E^(a/b)) - (d*e*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(4*Sq
rt[b]*c^3*E^(a/b)) + (e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(16*Sqrt[b]*c^5*E^(a/b)) + (d*e*Sqr
t[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*Sqrt[b]*c^3*E^((3*a)/b)) - (e^2*Sqrt[3*Pi]*Erfi[(
Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(32*Sqrt[b]*c^5*E^((3*a)/b)) + (e^2*Sqrt[Pi/5]*Erfi[(Sqrt[5]*Sqrt[
a + b*ArcSinh[c*x]])/Sqrt[b]])/(32*Sqrt[b]*c^5*E^((5*a)/b))

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5657

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cosh[a/b - x/b], x], x,
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5706

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] &&
 (p > 0 || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx &=\int \left (\frac {d^2}{\sqrt {a+b \sinh ^{-1}(c x)}}+\frac {2 d e x^2}{\sqrt {a+b \sinh ^{-1}(c x)}}+\frac {e^2 x^4}{\sqrt {a+b \sinh ^{-1}(c x)}}\right ) \, dx\\ &=d^2 \int \frac {1}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx+(2 d e) \int \frac {x^2}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx+e^2 \int \frac {x^4}{\sqrt {a+b \sinh ^{-1}(c x)}} \, dx\\ &=\frac {d^2 \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{b c}+\frac {(2 d e) \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^2(x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^4(x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{c^5}\\ &=\frac {d^2 \operatorname {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{2 b c}+\frac {d^2 \operatorname {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \sinh ^{-1}(c x)\right )}{2 b c}+\frac {(2 d e) \operatorname {Subst}\left (\int \left (-\frac {\cosh (x)}{4 \sqrt {a+b x}}+\frac {\cosh (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac {e^2 \operatorname {Subst}\left (\int \left (\frac {\cosh (x)}{8 \sqrt {a+b x}}-\frac {3 \cosh (3 x)}{16 \sqrt {a+b x}}+\frac {\cosh (5 x)}{16 \sqrt {a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^5}\\ &=\frac {d^2 \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b c}+\frac {d^2 \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{b c}-\frac {(d e) \operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {(d e) \operatorname {Subst}\left (\int \frac {\cosh (3 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^3}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (5 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {\cosh (3 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}\\ &=\frac {d^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {d^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {(d e) \operatorname {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}-\frac {(d e) \operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}-\frac {(d e) \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac {(d e) \operatorname {Subst}\left (\int \frac {e^{3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac {e^2 \operatorname {Subst}\left (\int \frac {e^{-5 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{32 c^5}+\frac {e^2 \operatorname {Subst}\left (\int \frac {e^{5 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{32 c^5}+\frac {e^2 \operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}+\frac {e^2 \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{16 c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{32 c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{32 c^5}\\ &=\frac {d^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {d^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {(d e) \operatorname {Subst}\left (\int e^{\frac {3 a}{b}-\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b c^3}-\frac {(d e) \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b c^3}-\frac {(d e) \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b c^3}+\frac {(d e) \operatorname {Subst}\left (\int e^{-\frac {3 a}{b}+\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{2 b c^3}+\frac {e^2 \operatorname {Subst}\left (\int e^{\frac {5 a}{b}-\frac {5 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{16 b c^5}+\frac {e^2 \operatorname {Subst}\left (\int e^{-\frac {5 a}{b}+\frac {5 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{16 b c^5}+\frac {e^2 \operatorname {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{8 b c^5}+\frac {e^2 \operatorname {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{8 b c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int e^{\frac {3 a}{b}-\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{16 b c^5}-\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int e^{-\frac {3 a}{b}+\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c x)}\right )}{16 b c^5}\\ &=\frac {d^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {d e e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {e^2 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}+\frac {d e e^{\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}-\frac {e^2 e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {e^2 e^{\frac {5 a}{b}} \sqrt {\frac {\pi }{5}} \text {erf}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {d^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {d e e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}+\frac {e^2 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{16 \sqrt {b} c^5}+\frac {d e e^{-\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{4 \sqrt {b} c^3}-\frac {e^2 e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}+\frac {e^2 e^{-\frac {5 a}{b}} \sqrt {\frac {\pi }{5}} \text {erfi}\left (\frac {\sqrt {5} \sqrt {a+b \sinh ^{-1}(c x)}}{\sqrt {b}}\right )}{32 \sqrt {b} c^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.23, size = 530, normalized size = 0.87 \[ \frac {e^{-\frac {5 a}{b}} \left (240 c^4 d^2 e^{\frac {4 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c x)}{b}\right )+40 \sqrt {3} c^2 d e e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-120 c^2 d e e^{\frac {4 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c x)}{b}\right )-40 \sqrt {3} c^2 d e e^{\frac {8 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-30 e^{\frac {6 a}{b}} \left (8 c^4 d^2-4 c^2 d e+e^2\right ) \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\sinh ^{-1}(c x)\right )+3 \sqrt {5} e^2 \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {5 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-15 \sqrt {3} e^2 e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+30 e^2 e^{\frac {4 a}{b}} \sqrt {-\frac {a+b \sinh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \sinh ^{-1}(c x)}{b}\right )+15 \sqrt {3} e^2 e^{\frac {8 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-3 \sqrt {5} e^2 e^{\frac {10 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {5 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )\right )}{480 c^5 \sqrt {a+b \sinh ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x^2)^2/Sqrt[a + b*ArcSinh[c*x]],x]

[Out]

(-30*(8*c^4*d^2 - 4*c^2*d*e + e^2)*E^((6*a)/b)*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, a/b + ArcSinh[c*x]] + 3*Sqr
t[5]*e^2*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-5*(a + b*ArcSinh[c*x]))/b] + 40*Sqrt[3]*c^2*d*e*E^((2*a)
/b)*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c*x]))/b] - 15*Sqrt[3]*e^2*E^((2*a)/b)*Sqrt[
-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c*x]))/b] + 240*c^4*d^2*E^((4*a)/b)*Sqrt[-((a + b*Arc
Sinh[c*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c*x])/b)] - 120*c^2*d*e*E^((4*a)/b)*Sqrt[-((a + b*ArcSinh[c*x])/b)]
*Gamma[1/2, -((a + b*ArcSinh[c*x])/b)] + 30*e^2*E^((4*a)/b)*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, -((a +
b*ArcSinh[c*x])/b)] - 40*Sqrt[3]*c^2*d*e*E^((8*a)/b)*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, (3*(a + b*ArcSinh[c*x
]))/b] + 15*Sqrt[3]*e^2*E^((8*a)/b)*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, (3*(a + b*ArcSinh[c*x]))/b] - 3*Sqrt[5
]*e^2*E^((10*a)/b)*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, (5*(a + b*ArcSinh[c*x]))/b])/(480*c^5*E^((5*a)/b)*Sqrt[
a + b*ArcSinh[c*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{2}}{\sqrt {b \operatorname {arsinh}\left (c x\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x))^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2/sqrt(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{2}+d \right )^{2}}{\sqrt {a +b \arcsinh \left (c x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2/(a+b*arcsinh(c*x))^(1/2),x)

[Out]

int((e*x^2+d)^2/(a+b*arcsinh(c*x))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{2}}{\sqrt {b \operatorname {arsinh}\left (c x\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2/(a+b*arcsinh(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^2/sqrt(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e\,x^2+d\right )}^2}{\sqrt {a+b\,\mathrm {asinh}\left (c\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^2/(a + b*asinh(c*x))^(1/2),x)

[Out]

int((d + e*x^2)^2/(a + b*asinh(c*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x^{2}\right )^{2}}{\sqrt {a + b \operatorname {asinh}{\left (c x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2/(a+b*asinh(c*x))**(1/2),x)

[Out]

Integral((d + e*x**2)**2/sqrt(a + b*asinh(c*x)), x)

________________________________________________________________________________________